
ELECTRONICS GUIDE

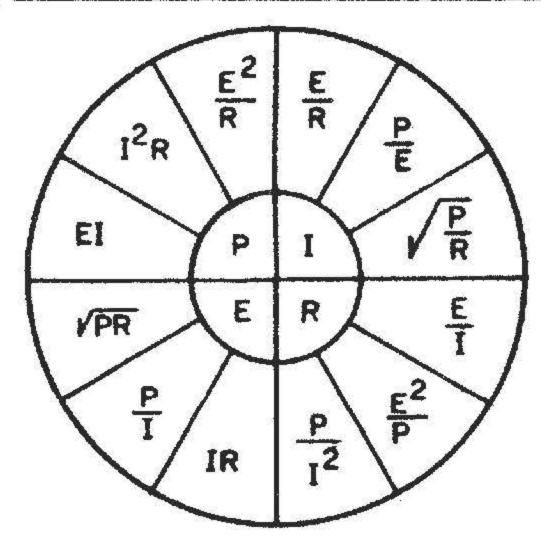
AZF30000-100

A GUIDE TO COMMONLY USED CONVERSION FACTORS, FORMULAS, TABLES AND COLOR CODES.

(I) CONVERSION FACTORS AND CONSTANTS

$$\pi = 3.14$$
 $2\pi = 6.28$
 $\pi^2 = 9.87$ $(2\pi)^2 = 39.5$
 $\epsilon = 2.718$ $\sqrt{2} = 1.414$
 $\sqrt{3} = 1.732$ LOG $\pi = 0.497$

1 METER = 39.37 INCHES = 3.28 FEET


1 KILOMETER = 0.621 MILE (ABOUT 3/5 MILE)

1 INCH = 2.54 CENTIMETERS

1 KILOGRAM = 2.2 POUNDS 1 LITER = 1.06 QUARTS

1 OUNCE = 28.35 GRAMS 1 HORSEPOWER = 746 WATTS

(2) OHM'S LAW FORMULAS FOR DC CIRCUITS

3 OHM'S LAW FORMULAS FOR AC CIRCUITS SERIES CIRCUITS

SERIES Z = VR²+(XL-XC) E = IZ I = $\frac{E}{Z}$ AP = I²Z TP = IR²R PF = $\frac{R}{Z}$ ER = IR EL = IXL EC = IXC IR = $\frac{ER}{R}$

$$Z = \frac{E_A}{I_t}$$

$$\bar{z} = IZ$$

$$I_t = \sqrt{I_R^2 + (I_L - I_C)^2}$$

$$AP = E_A I_t$$

$$TP = I_R^2 R$$

$$PF = \frac{TP}{AP}$$

$$E_R = I_R R$$

$$E_L = I_L X_L$$

$$E_C = I_C X_C$$

$$I_R = \frac{E}{R}$$

5) TWO RESISTORS IN PARALLEL

$$R_{t} = \frac{R_{1}R_{2}}{R_{1}+R_{2}}$$

$$R_{t} = \frac{R_{1}R_{2}}{R_{1}+R_{2}}$$

$$R_{t} = \frac{R_{1}R_{2}}{R_{1}+R_{2}}$$

IL = 5

Ic = Xc

EA = It Zt

(6) EQUAL RESISTORS IN PARALLEL

Rtotal = R , WHERE n IS THE NUMBER OF RESISTORS

7 RESISTORS IN PARALLEL, GENERAL FORMULA

$$R_{\text{total}} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots}$$

B SINUSOIDAL VOLTAGES AND CURRENTS

EFFECTIVE VALUE = 0.707 X PEAK VALUE AVERAGE VALUE = 0.637 X PEAK VALUE

PEAK VALUE = 1.414 X EFFECTIVE VALUE

EFFECTIVE VALUE = 1.11 X AVERAGE VALUE

PEAK VALUE = 1.57 X AVERAGE VALUE

AVERAGE VALUE = 0.9 X EFFECTIVE VALUE

9 CONDUCTANCE, SUSCEPTANCE, AND ADMITTANCE

$$G = \frac{1}{R}$$
 (FOR D-C CIRCUIT)

$$B = \frac{1}{X}$$
 (WHEN RESISTANCE IS 0)

$$B = \frac{X}{R^2 + X^2}$$

$$Y = \frac{1}{Z} = \frac{1}{\sqrt{p^2 + x^2}}$$

10 REACTANCE FORMULAS

$$L = \frac{X_L}{2\pi f}$$

(II) RESONANT FREQUENCY FORMULAS

$$f = \frac{1}{2\pi V LC}$$
, OR $f = \frac{159.2^{*}}{V LC}$
 $L = \frac{1}{4\pi^{2}f^{2}C}$, OR $L = \frac{25,330^{*}}{f^{2}C}$
 $C = \frac{1}{4\pi^{2}f^{2}L}$, OR $C = \frac{25,330^{*}}{f^{2}L}$

* WHERE IN THE SECOND FORMULA F IS IN ke AND L AND C ARE IN MICROUNITS.

(12) IMPEDANCE FORMULAS

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
 (FOR SERIES CIRCUIT)
 $Z = \frac{RX}{\sqrt{R^2 + X^2}}$ (FOR R AND X IN PARALLEL)

13 POWER FACTOR

pf = COS
$$\theta$$
, where θ is the angle of lead or lag

$$pf = \frac{TRUE\ POWER}{APPARENT\ POWER} = \frac{P}{EI}$$

$$pf = \frac{R}{Z}$$

Q OR FIGURE OF MERIT

(15) TRANSFORMER RELATIONSHIPS

$$\frac{N_{P}}{N_{S}} = \frac{E_{P}}{E_{S}} = \frac{I_{S}}{I_{P}} = \sqrt{\frac{Z_{P}}{Z_{S}}}$$

(16) EFFICIENCY (FOR ANY DEVICE)

(17) DECIBEL FORMULAS

WHEN IMPEDANCES ARE EQUAL,

$$dD = 10 \log \frac{P_1}{P_2} = 20 \log \frac{E_1}{E_2} = 20 \log \frac{I_1}{I_2}$$

WHEN IMPEDANCES ARE UNEQUAL,

$$db = 10 \log \frac{p_1}{p_2} = 20 \log \frac{E_1 \sqrt{Z_2}}{E_2 \sqrt{Z_1}} = 20 \log \frac{I_1 \sqrt{Z_1}}{I_2 \sqrt{Z_2}}$$

DECIBEL TABLE

DB	POWER	VOLTAGE OR CURRENT RATIO	DB	POWER	VOLTAGE OR CURRENT RATIO
0 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0	1.00 1.12 1.26 1.41 1.58 2.00 2.51 3.16 3.98 5.01	1.00 1.06 1.12 1.19 1.26 1.41 1.58 1.78 2.00 2.24	10 15 20 25 30 40 50 60 70 80	10.0 31.6 100 316 1,000 10,000 106 106 107	3.2 5.6 10 18 32 100 316 1,000 3,162 10,000
9.0	6.31 7.94	2.51 2.82	90 100	10 ⁹	31,620 10 ⁵

18 FREQUENCY AND WAVELENGTH

$$f_{KC} = \frac{3 \times 10^{5}}{^{2}METER}$$

$$f_{MC} = \frac{3 \times 10^{4}}{^{2}CENTIMETER}$$

$$f_{MC} = \frac{984}{^{2}FEET}$$

$$f_{MC} = \frac{984}{^{2}FEET}$$

$$f_{MC} = \frac{984}{^{2}FEET}$$

$$f_{MC} = \frac{984}{^{2}FEET}$$

(19) LENGTH OF ANTENNAS

FORMULAS ASSUME VELOCITY OF PROPAGATION EQUAL TO 95% OF THE VELOCITY OF LIGHT.

LFEET = 234 (FOR QUARTER-WAVE ANTENNA)

LFEET = 468 (FOR HALF-WAVE ANTENNA)

(20) COLOR CODE

O BLACK 4 YELLOW B GRAY
1 BROWN 5 GREEN 9 WHITE
2 RED 6 BLUE 5% GOLD
3 ORANGE 7 VIOLET 10% SILVER
20% NO COLOR

THIRD COLOR BAND INDICATES NUMBER OF ZEROS TO BE ADDED AFTER FIGURES GIVEN BY FIRST TWO COLOR BANDS. BUT IF THIRD COLOR BAND IS GOLD, MULTIPLY BY 0.1 AND IF SILVER, MULTIPLY BY 0.01. DO NOT CONFUSE WITH FOURTH COLOR BAND THAT INDICATES TOLERANCE. THUS, A RESISTOR MARKED BLUE-RED-GOLD-GOLD HAS A RESISTANCE OF 6.2 OHMS AND A 5% TOLERANCE.

(21) COLOR CODE FOR POWER TRANSFORMERS

PRIMARY LEADS - BLACK OR BLACK-RED

PRIMARY TAP -- BLACK-YELLOW

HIGH VOLTAGE WINDING - RED (C.T.-RED-YELLOW)

RECTIFIER FILAMENT -- YELLOW (C.T. - YELLOW-BLUE)

AMPLIFIER FIL. NO. 1 - GREEN (C.T.-

GREEN-YELLOW)

AMPLIFIER FIL. NO. 2 -- BROWN (C.T. -

BROWN-YELLOW)

AMPLIFIER FIL. NO. 3 - SLATE (C.T. - SLATE-YELLOW)

(22) COLOR CODE FOR BATTERY CABLE

A+ RED B(INTERMEDIATE) WHITE

A- BLACK C+ BROWN

B+ BLUE C(INTERMEDIATE) ORANGE

B- YELLOW C- GREEN

(23) COLOR CODE, I.F. TRANSFORMERS

PRIMARY PLATE

PRIMARY B+

SECONDARY GRID OR DIODE

GREEN

GRID OR DIODE RETURN

BLACK

(24) COLOR CODE FOR CHASSIS WIRING

BLACK - GROUNDS, GROUNDED ELEMENTS, AND

RETURNS.

BROWN -- HEATERS OR FILAMENTS, OFF GROUND.

RED - POWER SUPPLY 8+.
ORANGE - SCREEN GRIDS.

YELLOW - CATHODES.

GREEN - CONTROL GRIDS.

BLUE - PLATES.

GRAY - A-C POWER LINES.

WHITE - ABOVE OR BELOW GROUND RETURNS,
A.V. C., ETC.

(25) COLOR CODE FOR AF AND OUTPUT TRANSFORMERS

BLUE - PLATE (FINISH) LEAD OF PRIMARY.

RED — B+ (THIS APPLIES WHETHER PRIMARY IS PLAIN OR CENTER-TAPPED).

BROWN — PLATE (START) LEAD ON C.T. PRIMARIES.

(BLUE MAY BE USED FOR THIS LEAD IF
POLARITY IS NOT IMPORTANT.)

GREEN - GRID (FINISH) LEAD OF SECONDARY (HOT END OF VOICE COIL).

BLACK - GRID RETURN (THIS APPLIES WHETHER SECONDARY IS PLAIN OR c-t).

YELLOW - GRID (START) LEAD ON c-t SECONDARIES.

(GREEN MAY BE USED FOR THIS LEAD IF POLARITY IS NOT IMPORTANT.)

(26) COLOR CODE FOR LOUDSPEAKERS

FIELD COILS

BLACK AND RED — START.

YELLOW AND RED — FINISH,

SLATE AND RED — TAP(IF USED).

VOICE COILS

BLACK - START.

GREEN-FINISH.

TRANSFORMER PRIMARIES

BLUE OR BROWN - START.

BLUE - FINISH.

RED - CENTER TAP.

NOTE: IF TWO FIELD COILS ARE FITTED TO THE SAME LOUDSPEAKER, THE BASIC COLOR CODING IS USED FOR THE LOWER RESISTANCE FIELD, AND GREEN IS SUBSTITUTED FOR THE RED IN THE HIGHER RESISTANCE FIELD.

(27) TIME DURATION OF ONE CYCLE

100 kc - 10 usec

200 kc - Susec

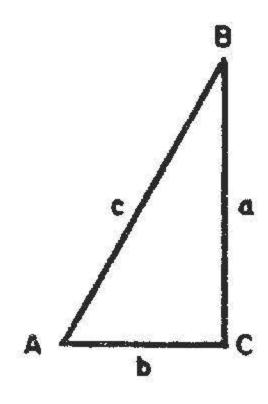
250 kc - 4usec

1 mc - 1 usec

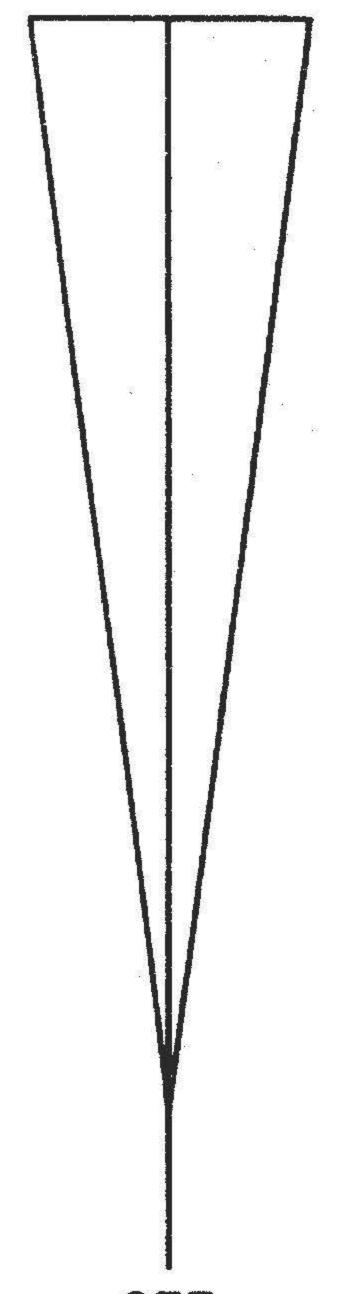
4 mc - 0.25 µ sec

10 mc - 0.1 µsec

(28) COUPLED INDUCTANCE


(M = MUTUAL INDUCTANCE;

K = COEFFICIENT OF COUPLING)


Lt = L1 + L2 ±2M

 $K = \frac{M}{VL_1L_2}$

(29) TRIGONOMETRIC FORMULAS

FOR FURTHER INFORMATION AND ASSISTANCE

SEE YOUR LOCAL FTD/MTD